Search results

1 – 5 of 5
Article
Publication date: 4 October 2021

Zhe Liu, Zhijian Qiao, Chuanzhe Suo, Yingtian Liu and Kefan Jin

This paper aims to study the localization problem for autonomous industrial vehicles in the complex industrial environments. Aiming for practical applications, the pursuit is to…

Abstract

Purpose

This paper aims to study the localization problem for autonomous industrial vehicles in the complex industrial environments. Aiming for practical applications, the pursuit is to build a map-less localization system which can be used in the presence of dynamic obstacles, short-term and long-term environment changes.

Design/methodology/approach

The proposed system contains four main modules, including long-term place graph updating, global localization and re-localization, location tracking and pose registration. The first two modules fully exploit the deep-learning based three-dimensional point cloud learning techniques to achieve the map-less global localization task in large-scale environment. The location tracking module implements the particle filter framework with a newly designed perception model to track the vehicle location during movements. Finally, the pose registration module uses visual information to exclude the influence of dynamic obstacles and short-term changes and further introduces point cloud registration network to estimate the accurate vehicle pose.

Findings

Comprehensive experiments in real industrial environments demonstrate the effectiveness, robustness and practical applicability of the map-less localization approach.

Practical implications

This paper provides comprehensive experiments in real industrial environments.

Originality/value

The system can be used in the practical automated industrial vehicles for long-term localization tasks. The dynamic objects, short-/long-term environment changes and hardware limitations of industrial vehicles are all considered in the system design. Thus, this work moves a big step toward achieving real implementations of the autonomous localization in practical industrial scenarios.

Article
Publication date: 16 January 2019

Kefan Xie, Zimei Liu, Liuliu Fu and Benbu Liang

The purpose of this paper is to propose a theoretical framework of applying the Internet of Things (IoT) technologies to the intelligent evacuation protocol in libraries at…

3068

Abstract

Purpose

The purpose of this paper is to propose a theoretical framework of applying the Internet of Things (IoT) technologies to the intelligent evacuation protocol in libraries at emergency situations.

Design/methodology/approach

The authors conducted field investigations on eight libraries in Wuhan, China, analyzed the characteristics of crowd gathering in libraries and the problems of the libraries’ existing evacuation plans. Therefore, an IoT-based intelligent evacuation protocol in libraries was proposed. Its basic structure consisted of five components: the information base, the protocol base, the IoT sensors, the information fusion system and the intelligent evacuation protocol generation system. In the information fusion system, Dempster–Shafer (D-S) evidence theory was employed as the information fusion algorithm to fuse the multi-sensor information at multiple time points, so as to reduce the uncertainty of disaster prediction. The authors also conducted a case study on the Library L in Wuhan, China. A specific evacuation route was generated for a fire and the crowd evacuation was simulated by the software Patherfind.

Findings

The proposed IoT-based evacuation protocol has four distinguishing features: scenario corresponding, precise evacuation, dynamic correction and intelligent decision-making. The case study shows that the proposed protocol is feasible in practice, indicating that the IoT technologies have great potential to be successfully applied to the safety management in libraries.

Research limitations/implications

The software and hardware requirements as well as the Internet network requirements of IoT technologies need to be further discussed.

Practical implications

The proposed IoT-based intelligent evacuation protocol can be widely used in libraries, which is one of the inspirations for the use of IoT technologies in modern constructers.

Originality/value

The application of IoT technologies in libraries is a brand-new topic that has drawn much attention in academia recently. The crowd safety management in libraries is of great significance, and there is little professional literature on it. This paper proposes an IoT-based intelligent evacuation protocol, aiming at improving the safety management in libraries at emergency situations.

Article
Publication date: 7 April 2023

Jin Fan

This paper aims to summarize the conditions under which participatory art museums and local commercial traditions can have positive and sustained interactions.

Abstract

Purpose

This paper aims to summarize the conditions under which participatory art museums and local commercial traditions can have positive and sustained interactions.

Design/methodology/approach

The methods include studying the quantity and content of exhibitions in the four cities of the Bay Area, Guangzhou, Shenzhen, Hong Kong and Shunde, to compare their academic positioning and influence on local commercial production. Through interviewing curators, artists and university scholars who are active in the Bay Area and are invited by the museums on a regular basis, it will let us understand the attitudes from the government, public and capital towards the regional art museums and how these attitudes influence the choice of theme in the participatory art museum practice.

Findings

To summarize the findings, the author concludes that a participatory art gallery with commercial production in the Bay Area requires the following: a long tradition of local business and wealth accumulation; a local area is of a size where the community of acquaintances can interact on a regular basis; continued interest of a diverse local elite, including a mix of businessmen and gentry, government officials and various sectors of the public; and museums serving as intermediaries to coordinate the effective integration of the commercial and traditional resources.

Originality/value

Participatory approaches and their impacts are a shared area of interest across urban planning, heritage studies and the creative arts. Crucially, solely relying on either the Latin bottom-up community-oriented approach (Barnes, 2003) or the British top-down policy-oriented approach (Heijnen, 2010) did not maximize benefits, though these distinctive two approaches were convinced that museums should play a larger role in becoming agents of contemporary social change. By contrast, in focusing on Chinese Art Museums, this study will explore participatory practice in the Asian context. In doing so, it will not only diversify the emerging literature on the social and economic impacts of arts and heritage organizations but also challenge the Western lens through which participatory approaches are viewed in the interdisciplinary literature. As Lefebvre acknowledged his lack of non-Western regions in his research, this study will offer new perspectives on museology and its contributions to the Production of Space.

Article
Publication date: 7 September 2021

Yang Liu, Yi Chen, Kefan Xie and Jia Liu

This research aims to figure out whether the pool testing method of SARS-CoV-2 for COVID-19 is effective and the optimal sample size is in one bunch. Additionally, since the…

Abstract

Purpose

This research aims to figure out whether the pool testing method of SARS-CoV-2 for COVID-19 is effective and the optimal sample size is in one bunch. Additionally, since the infection rate was unknown at the beginning, this research aims to propose a multiple sampling approach that enables the pool testing method to be utilized successfully.

Design/methodology/approach

The authors verify that the pool testing method of SARS-CoV-2 for COVID-19 is effective under the situation of the shortage of nucleic acid detection kits based on probabilistic modeling. In this method, the testing is performed on several samples of the cases together as a bunch. If the test result of the bunch is negative, then it is shown that none of the cases in the bunch has been infected with the novel coronavirus. On the contrary, if the test result of the bunch is positive, then the samples are tested one by one to confirm which cases are infected.

Findings

If the infection rate is extremely low, while the same number of detection kits is used, the expected number of cases that can be tested by the pool testing method is far more than that by the one-by-one testing method. The pool testing method is effective only when the infection rate is less than 0.3078. The higher the infection rate, the smaller the optimal sample size in one bunch. If N samples are tested by the pool testing method, while the sample size in one bunch is G, the number of detection kits required is in the interval (N/G, N).

Originality/value

This research proves that the pool testing method is not only suitable for the situation of the shortage of detection kits but also the situation of the overall or sampling detection for a large population. More importantly, it calculates the optimal sample size in one bunch corresponding to different infection rates. Additionally, a multiple sampling approach is proposed. In this approach, the whole testing process is divided into several rounds in which the sample sizes in one bunch are different. The actual infection rate is estimated gradually precisely by sampling inspection in each round.

Details

Kybernetes, vol. 52 no. 1
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 9 May 2020

Amirhossein Karamoozian and Desheng Wu

Construction projects involve with various risks during all phases of project lifecycle. Failure mode and effective analysis (FMEA) is a useful tool for identifying and…

Abstract

Purpose

Construction projects involve with various risks during all phases of project lifecycle. Failure mode and effective analysis (FMEA) is a useful tool for identifying and eliminating possible risk of failure modes (FMs) and improving the reliability and safety of systems in a broad range of industries. The traditional FMEA method applies risk priority number method (RPN) to calculate risk of FMs. RPN method cannot consider the direct and indirect interdependencies between the FMs and is not appropriate for complex system with numerous components. The purpose of this study is to propose an approach to consider interdependencies between FMs and also using fuzzy theory to consider uncertainties in experts' judgments.

Design/methodology/approach

The proposed approach consist of three stages: the first stage of hybrid model used fuzzy FMEA method to identify the failure mode risks and derive the RPN values. The second stage applied Fuzzy Decision-Making Trial and Evaluation Laboratory (FDEMATEL) method to determine the interdependencies between the FMs which are defined through fuzzy FMEA. Then, analytic network process (ANP) is applied in the third stage to calculate the weights of FMs based on the interdependencies that are generated through FDEMATEL method. Finally, weight of FMs through fuzzy FMEA and FDEMATEL–ANP are multiplied to generate the final weights for prioritization. Afterward, a case study for a commercial building project is introduced to illustrate proficiency of model.

Findings

The results showed that the suggested approach could reveal the important FMs and specify the interdependencies between them successfully. Overall, the suggested model can be considered as an efficient hybrid FMEA approach for risk prioritization.

Originality/value

The originality of approach comes from its ability to consider interdependencies between FMs and uncertainties of experts' judgments.

Details

Engineering, Construction and Architectural Management, vol. 27 no. 9
Type: Research Article
ISSN: 0969-9988

Keywords

1 – 5 of 5